景林, 闵义, 亓捷, 刘承军, 范佳
转炉热损失率是影响物料消耗量预测精度的重要参数之一,利用某钢厂150 t转炉1 900炉次冶炼历史生产数据,在热损失率计算的基础上,采用机器学习算法实现了转炉热损失率的准确预测。预测结果表明,相比于支持向量回归(support vector regression,SVR)和随机森林(random forest,RF)算法,轻量级梯度提升机(light gradient boosting machine,LightGBM)算法的预测精度最高;考虑上炉次的影响,增加上炉次冶炼终点温度变量后,LightGBM算法的决定系数R2由0.89提高到0.93,在±0.005、±0.01范围内,热损失率预测命中率分别由85%、89%提高到90%、93%;另外,通过算法内部参数优化可进一步提高模型预测精度,对于LightGBM算法,决定系数R2和均方根误差ERMS(root mean square error,RMSE)进一步分别达到了0.94、0.009,在±0.005、±0.01范围内热损失率预测命中率进一步分别提高到91%、94%。基于转炉冶炼历史数据,采用智能算法可以实现转炉热损失率预测,为转炉物料消耗预测提供支持。