炼铁过程智能控制
秦梓杰, 贺东风, 冯凯, 王广伟, 刘纲, 刘崇
高炉冶炼过程中,受到工况动态变化及生产现场复杂因素的影响,压差的波动存在一定的时滞性,要实现基于实时在线数据精准提前预报压差还存在一定困难。针对该问题,基于高炉实际冶炼过程中,其具有多元变量的、时间上前后依赖的时序数据特点,分别采用了能够有效反映生产过程参数波动程度的波动率分析和决策树特征重要性分析方法,选取了不同的模型输入特征子集,从而分别建立了基于长短期记忆网络(long short term memory,LSTM)的时序性压差预测模型。两种方法对比结果表明,基于波动率分析确定输入特征的LSTM 预测模型在预测误差范围[ -5, +5] kPa 以内,命中率提高了0. 761% 。基于生产参数的波动率分析的特征选择方法,能够有效提升LSTM 模型的预测精度,验证了在高炉富氧鼓风条件下,时序性压差预测模型输入特征选取方法的有效性。